Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Cells ; 13(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38667314

RESUMO

The clinical management of bladder cancer continues to present significant challenges. Bacillus Calmette-Guérin (BCG) immunotherapy remains the gold standard of treatment for non-muscle invasive bladder cancer (NMIBC), but many patients develop recurrence and progression to muscle-invasive disease (MIBC), which is resistant to BCG. This review focuses on the immune mechanisms mobilized by BCG in bladder cancer tumor microenvironments (TME), mechanisms of BCG resistance, the dual role of the BCG-triggered NFkB/TNFα/PGE2 axis in the regulation of anti-tumor and tumor-promoting aspects of inflammation, and emerging strategies to modulate their balance. A better understanding of BCG resistance will help develop new treatments and predictive biomarkers, paving the way for improved clinical outcomes in bladder cancer patients.


Assuntos
Vacina BCG , Imunoterapia , Microambiente Tumoral , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Humanos , Microambiente Tumoral/imunologia , Vacina BCG/uso terapêutico , Vacina BCG/imunologia , Imunoterapia/métodos , Animais
2.
Front Immunol ; 15: 1334769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38312842

RESUMO

Background: Stimulator of Interferon Genes (STING) is a dsDNA sensor that triggers type I inflammatory responses. Recent data from our group and others support the therapeutic efficacy of STING agonists applied intratumorally or systemically in a range of murine tumor models, with treatment benefits associated with tumor vascular normalization and improved immune cell recruitment and function within the tumor microenvironment (TME). However, such interventions are rarely curative and STING agonism coordinately upregulates expression of immunoregulatory interferon-stimulated genes (ISGs) including Arg2, Cox2, Isg15, Nos2, and Pdl1 that may limit treatment benefits. We hypothesized that combined treatment of melanoma-bearing mice with STING agonist ADU-S100 together with antagonists of regulatory ISGs would result in improved control of tumor growth vs. treatment with ADU-S100 alone. Methods: Mice bearing either B16 (BRAFWTPTENWT) or BPR20 (BRAFV600EPTEN-/-) melanomas were treated with STING agonist ADU-S100 plus various inhibitors of ARG2, COX2, NOS2, PD-L1, or ISG15. Tumor growth control and changes in the TME were evaluated for combination treatment vs ADU-S100 monotherapy by tumor area measurements and flow cytometry/transcriptional profiling, respectively. Results: In the B16 melanoma model, we noted improved antitumor efficacy only when ADU-S100 was combined with neutralizing/blocking antibodies against PD-L1 or ISG15, but not inhibitors of ARG2, COX2, or NOS2. Conversely, in the BPR20 melanoma model, improved tumor growth control vs. ADU-S100 monotherapy was only observed when combining ADU-S100 with ARG2i, COX2i, and NOS2i, but not anti-PD-L1 or anti-ISG15. Immune changes in the TME associated with improved treatment outcomes were subtle but included increases in proinflammatory innate immune cells and activated CD8+CD69+ T cells and varied between the two tumor models. Conclusions: These data suggest contextual differences in the relative contributions of individual regulatory ISGs that serve to operationally limit the anti-tumor efficacy of STING agonists which should be considered in future design of novel combination protocols for optimal treatment benefit.


Assuntos
Antígeno B7-H1 , Melanoma Experimental , Camundongos , Animais , Proteínas Proto-Oncogênicas B-raf , Ciclo-Oxigenase 2 , Linhagem Celular Tumoral , Interferons , Microambiente Tumoral
3.
J Immunother Cancer ; 11(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37963636

RESUMO

BACKGROUND: Presence of cytotoxic T lymphocytes (CTL) in the tumor microenvironment (TME) predicts the effectiveness of cancer immunotherapies. The ability of toll-like receptor 3 (TLR3) ligands, interferons (IFNs) and COX2 inhibitors to synergistically induce CTL-attracting chemokines (but not regulatory T cell (Treg)-attractants) in the TME, but not in healthy tissues, observed in our preclinical studies, suggested that their systemic application can reprogram local TMEs. METHODS: Six evaluable patients (33-69 years) with metastatic triple-negative breast cancer received six doses of systemic chemokine-modulating (CKM) regimen composed of TLR3 ligand (rintatolimod; 200 mg; intravenous), IFN-α2b (20 MU/m2; intravenous) and COX2 inhibitor (celecoxib; 2×200 mg; oral) over 2 weeks. The predetermined primary endpoint was the intratumoral change in the expression of CTL marker, CD8α, in the post-CKM versus pre-CKM tumor biopsies. Patients received follow-up pembrolizumab (200 mg, intravenously, every 3 weeks), starting 3-8 days after completion of CKM. RESULTS: Post-CKM biopsies showed selectively increased CTL markers CD8α (average 10.2-fold, median 5.5-fold, p=0.034) and granzyme B (GZMB; 6.1-fold, median 5.8-fold, p=0.02), but not FOXP3 (Treg marker) relative to HPRT1 expression, resulting in the increases in average CD8α/FOXP3 ratio and GZMB/FOXP3 ratio. CKM increased intratumoral CTL-attractants CCL5 and CXCL10, but not Treg-attractants CCL22 or CXCL12. In contrast, CD8+ T cells and their CXCR3+ subset showed transient decreases in blood. One clinical response (breast tumor autoamputation) and three stable diseases were observed. The patient with clinical response remains disease free, with a follow-up of 46 months as of data cut-off. CONCLUSIONS: Short-term systemic CKM selectively increases CTL numbers and CTL/Treg ratios in the TME, while transiently decreasing CTL numbers in the blood. Transient effects of CKM suggest that its simultaneous application with checkpoint blockade and other forms of immunotherapy may be needed for optimal outcomes.


Assuntos
Neoplasias da Mama , Linfócitos T Citotóxicos , Humanos , Feminino , Linfócitos T Citotóxicos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neoplasias da Mama/patologia , Receptor 3 Toll-Like/metabolismo , Microambiente Tumoral , Ligantes , Interferon-alfa/metabolismo , Fatores de Transcrição Forkhead/metabolismo
4.
Res Sq ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37886562

RESUMO

CD28-driven "signal 2" is critical for naïve CD8+ T cell responses to dendritic cell (DC)-presented weak antigens, including non-mutated tumor-associated antigens (TAAs). However, it is unclear how DC-primed cytotoxic T lymphocytes (CTLs) respond to the same TAAs presented by cancer cells which lack CD28 ligands. Here, we show that NK receptors (NKRs) DNAM-1 and NKG2D replace CD28 during CTL re-activation by cancer cells presenting low levels of MHC I/TAA complexes, leading to enhanced proximal TCR signaling, immune synapse formation, CTL polyfunctionality, release of cytolytic granules and antigen-specific cancer cell killing. Double-transduction of T cells with recombinant TCR and NKR constructs or upregulation of NKR-ligand expression on cancer cells by chemotherapy enabled effective recognition and killing of poorly immunogenic tumor cells by CTLs. Operational synergy between TCR and NKRs in CTL recognition explains the ability of cancer-expressed self-antigens to serve as tumor rejection antigens, helping to develop more effective therapies.

5.
J Exp Clin Cancer Res ; 42(1): 213, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37596619

RESUMO

There is increasing evidence indicating the significant role of DDX5 (also called p68), acting as a master regulator and a potential biomarker and target, in tumorigenesis, proliferation, metastasis and treatment resistance for cancer therapy. However, DDX5 has also been reported to act as an oncosuppressor. These seemingly contradictory observations can be reconciled by DDX5's role in DNA repair. This is because cancer cell apoptosis and malignant transformation can represent the two possible outcomes of a single process regulated by DDX5, reflecting different intensity of DNA damage. Thus, targeting DDX5 could potentially shift cancer cells from a growth-arrested state (necessary for DNA repair) to apoptosis and cell killing. In addition to the increasingly recognized role of DDX5 in global genome stability surveillance and DNA damage repair, DDX5 has been implicated in multiple oncogenic signaling pathways. DDX5 appears to utilize distinct signaling cascades via interactions with unique proteins in different types of tissues/cells to elicit opposing roles (e.g., smooth muscle cells versus cancer cells). Such unique features make DDX5 an intriguing therapeutic target for the treatment of human cancers, with limited low toxicity to normal tissues. In this review, we discuss the multifaceted functions of DDX5 in DNA repair in cancer, immune suppression, oncogenic metabolic rewiring, virus infection promotion, and negative impact on the human microbiome (microbiota). We also provide new data showing that FL118, a molecular glue DDX5 degrader, selectively works against current treatment-resistant prostate cancer organoids/cells. Altogether, current studies demonstrate that DDX5 may represent a unique oncotarget for effectively conquering cancer with minimal toxicity to normal tissues.


Assuntos
RNA Helicases DEAD-box , Microbiota , Humanos , Masculino , Transformação Celular Neoplásica , RNA Helicases DEAD-box/genética , Reparo do DNA , Neoplasias da Próstata , Transdução de Sinais , Terapia de Imunossupressão
6.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446025

RESUMO

The prevalence of obesity, defined as the body mass index (BMI) ≥ 30 kg/m2, has reached epidemic levels. Obesity is associated with an increased risk of various cancers, including gastrointestinal ones. Recent evidence has suggested that obesity disproportionately impacts males and females with cancer, resulting in varied transcriptional and metabolic dysregulation. This study aimed to elucidate the differences in the metabolic milieu of adenocarcinomas of the gastrointestinal (GI) tract both related and unrelated to sex in obesity. To demonstrate these obesity and sex-related effects, we utilized three primary data sources: serum metabolomics from obese and non-obese patients assessed via the Biocrates MxP Quant 500 mass spectrometry-based kit, the ORIEN tumor RNA-sequencing data for all adenocarcinoma cases to assess the impacts of obesity, and publicly available TCGA transcriptional analysis to assess GI cancers and sex-related differences in GI cancers specifically. We applied and integrated our unique transcriptional metabolic pipeline in combination with our metabolomics data to reveal how obesity and sex can dictate differential metabolism in patients. Differentially expressed genes (DEG) analysis of ORIEN obese adenocarcinoma as compared to normal-weight adenocarcinoma patients resulted in large-scale transcriptional reprogramming (4029 DEGs, adj. p < 0.05 and |logFC| > 0.58). Gene Set Enrichment and metabolic pipeline analysis showed genes enriched for pathways relating to immunity (inflammation, and CD40 signaling, among others) and metabolism. Specifically, we found alterations to steroid metabolism and tryptophan/kynurenine metabolism in obese patients, both of which are highly associated with disease severity and immune cell dysfunction. These findings were further confirmed using the TCGA colorectal adenocarcinoma (CRC) and esophageal adenocarcinoma (ESCA) data, which showed similar patterns of increased tryptophan catabolism for kynurenine production in obese patients. These patients further showed disparate alterations between males and females when comparing obese to non-obese patient populations. Alterations to immune and metabolic pathways were validated in six patients (two obese and four normal weight) via CD8+/CD4+ peripheral blood mononuclear cell RNA-sequencing and paired serum metabolomics, which showed differential kynurenine and lipid metabolism, which corresponded with altered T-cell transcriptome in obese populations. Overall, obesity is associated with differential transcriptional and metabolic programs in various disease sites. Further, these alterations, such as kynurenine and tryptophan metabolism, which impact both metabolism and immune phenotype, vary with sex and obesity together. This study warrants further in-depth investigation into obesity and sex-related alterations in cancers that may better define biomarkers of response to immunotherapy.


Assuntos
Adenocarcinoma , Neoplasias Gastrointestinais , Masculino , Feminino , Humanos , Cinurenina , Triptofano , Leucócitos Mononucleares , Obesidade/genética , Neoplasias Gastrointestinais/genética
7.
J Transl Med ; 21(1): 508, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507765

RESUMO

Outcomes for patients with melanoma have improved over the past decade with the clinical development and approval of immunotherapies targeting immune checkpoint receptors such as programmed death-1 (PD-1), programmed death ligand 1 (PD-L1) or cytotoxic T lymphocyte antigen-4 (CTLA-4). Combinations of these checkpoint therapies with other agents are now being explored to improve outcomes and enhance benefit-risk profiles of treatment. Alternative inhibitory receptors have been identified that may be targeted for anti-tumor immune therapy, such as lymphocyte-activation gene-3 (LAG-3), as have several potential target oncogenes for molecularly targeted therapy, such as tyrosine kinase inhibitors. Unfortunately, many patients still progress and acquire resistance to immunotherapy and molecularly targeted therapies. To bypass resistance, combination treatment with immunotherapies and single or multiple TKIs have been shown to improve prognosis compared to monotherapy. The number of new combinations treatment under development for melanoma provides options for the number of patients to achieve a therapeutic benefit. Many diagnostic and prognostic assays have begun to show clinical applicability providing additional tools to optimize and individualize treatments. However, the question on the optimal algorithm of first- and later-line therapies and the search for biomarkers to guide these decisions are still under investigation. This year, the Melanoma Bridge Congress (Dec 1st-3rd, 2022, Naples, Italy) addressed the latest advances in melanoma research, focusing on themes of paramount importance for melanoma prevention, diagnosis and treatment. This included sessions dedicated to systems biology on immunotherapy, immunogenicity and gene expression profiling, biomarkers, and combination treatment strategies.


Assuntos
Melanoma , Humanos , Melanoma/terapia , Melanoma/tratamento farmacológico , Imunoterapia , Antígeno CTLA-4 , Itália
8.
Wiad Lek ; 76(12): 2543-2555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38290016

RESUMO

Marie Sklodowska-Curie Symposia on Cancer Research and Care (MSCS-CRC) promote collaborations between cancer researchers and care providers in the United States, Canada and Central and Eastern European Countries (CEEC), to accelerate the development of new cancer therapies, advance early detection and prevention, increase cancer awareness, and improve cancer care and the quality of life of patients and their families. The third edition of MSCS-CRC, held at Roswell Park Comprehensive Cancer Center, Buffalo, NY, in September 2023, brought together 137 participants from 20 academic institutions in the US, Poland, Ukraine, Lithuania, Croatia and Hungary, together with 16 biotech and pharma entities. The key areas of collaborative opportunity identified during the meeting are a) creating of a database of available collaborative projects in the areas of early-phase clinical trials, preclinical development, and identification of early biomarkers; b) promoting awareness of cancer risks and efforts at cancer prevention; c) laboratory and clinical training; and d) sharing experience in cost-effective delivery of cancer care and improving the quality of life of cancer patients and their families. Examples of ongoing international collaborations in the above areas were discussed. Participation of the representatives of the Warsaw-based Medical Research Agency, National Cancer Institute (NCI) of the United States, National Cancer Research Institutes of Poland and Lithuania, New York State Empire State Development, Ministry of Health of Ukraine and Translational Research Cancer Center Consortium of 13 cancer centers from the US and Canada, facilitated the discussion of available governmental and non-governmental funding initiatives in the above areas.


Assuntos
Pesquisa Biomédica , Neoplasias , Humanos , Estados Unidos , New York , Qualidade de Vida , Neoplasias/terapia , Polônia
9.
Cancers (Basel) ; 14(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36428740

RESUMO

The immune tumor microenvironment (TME) of epithelial ovarian cancer (EOC) carries both effector and suppressive functions. To define immune correlates of chemotherapy-induced tumor involution, we performed longitudinal evaluation of biomarker expression on serial biological specimens collected during intraperitoneal (IP) platinum-based chemotherapy. Serial biological samples were collected at several time points during IP chemotherapy. RNA from IP fluid cells and tumor tissue was analyzed via NanoString. Meso Scale Discovery (MSD) multiplex assay and ELISA for MUC1 antibodies were performed on plasma and IP fluid. Differentially expressed genes in IP fluid demonstrate an upregulation of B cell function and activation of Th2 immune response along with dampening of Th1 immunity during chemotherapy. MSD analysis of IP fluid and gene expression analysis of tumor tissue revealed activation of Th2 immunity and the complement system. Anti-MUC1 antibodies were detected in IP fluid samples. IP fluid analysis in a secondary cohort also identified chemotherapy-induced B cell function genes. This study shows that serial IP fluid sampling is an effective method to capture changes in the immune TME during chemotherapy and reveals treatment induced changes in B cell function and Th2 immunity.

10.
Mol Cancer ; 21(1): 196, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36221123

RESUMO

Oncolytic viruses (OVs) represent a new class of multi-modal immunotherapies for cancer, with OV-elicited antitumor immunity being key to their overall therapeutic efficacy. Currently, the clinical effectiveness of OV as monotherapy remains limited, and thus investigators have been exploring various combinations with other anti-cancer agents and demonstrated improved therapeutic efficacy. As cancer cells have evolved to alter key signaling pathways for enhanced cell proliferation, cancer progression and metastasis, these cellular and molecular changes offer promising targets for rational cancer therapy design. In this regard, key molecules in relevant signaling pathways for cancer cells or/and immune cells, such as EGFR-KRAS (e.g., KRASG12C), PI3K-AKT-mTOR, ERK-MEK, JAK-STAT, p53, PD-1-PD-L1, and epigenetic, or immune pathways (e.g., histone deacetylases, cGAS-STING) are currently under investigation and have the potential to synergize with OV to modulate the immune milieu of the tumor microenvironment (TME), thereby improving and sustaining antitumor immunity. As many small molecule modulators of these signaling pathways have been developed and have shown strong therapeutic potential, here we review key findings related to both OV-mediated immunotherapy and the utility of small molecule modulators of signaling pathways in immuno-oncology. Then, we focus on discussion of the rationales and potential strategies for combining OV with selected modulators targeting key cellular signaling pathways in cancer or/and immune cells to modulate the TME and enhance antitumor immunity and therapeutic efficacy. Finally, we provide perspectives and viewpoints on the application of novel experimental systems and technologies that can propel this exciting branch of medicine into a bright future.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Antígeno B7-H1 , Receptores ErbB , Histona Desacetilases , Humanos , Imunoterapia , Quinases de Proteína Quinase Ativadas por Mitógeno , Neoplasias/patologia , Nucleotidiltransferases , Vírus Oncolíticos/genética , Fosfatidilinositol 3-Quinases , Receptor de Morte Celular Programada 1 , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteína Supressora de Tumor p53
11.
Cancers (Basel) ; 14(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35454764

RESUMO

Early-stage triple negative breast cancer (TNBC) has been traditionally treated with surgery, radiation, and chemotherapy. The current standard of care systemic treatment of early-stage II and III TNBC involves the use of anthracycline-cyclophosphamide and carboplatin-paclitaxel with pembrolizumab in the neoadjuvant setting followed by adjuvant pembrolizumab per KEYNOTE-522. It is increasingly clear that not all patients with early-stage TNBC need this intensive treatment, thus paving the way for exploring opportunities for regimen de-escalation in selected subgroups. For T1a tumors (≤5 mm), chemotherapy is not used, and for tumors 6-10 mm (T1b) in size with negative lymph nodes, retrospective studies have failed to show a significant benefit with chemotherapy. In low-risk patients, anthracycline-free chemotherapy may be as effective as conventional therapy, as shown in some studies where replacing anthracyclines with carboplatin has shown non-inferior results for pathological complete response (pCR), which may form the backbone of future combination therapies. Recent advances in our understanding of TNBC heterogeneity, mutations, and surrogate markers of response such as pCR have enabled the development of multiple treatment options in the (neo)adjuvant setting in order to de-escalate treatment. These de-escalation studies based on tumor mutational status, such as using Poly ADP-ribose polymerase inhibitors (PARPi) in patients with BRCA mutations, and new immunotherapies such as PD1 blockade, have shown a promising impact on pCR. In addition, the investigational use of (bio)markers, such as high levels of tumor-infiltrating lymphocytes (TILs), low levels of tumor-associated macrophages (TAMs), and complete remission on imaging, also look promising. In this review, we cover the current standard of care systemic treatment of early TNBC and review the opportunities for treatment de-escalation based on clinical risk factors, biomarkers, mutational status, and molecular subtype.

12.
Cancer Cell ; 40(2): 153-167.e11, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35120601

RESUMO

TH2 cells and innate lymphoid cells 2 (ILC2) can stimulate tumor growth by secreting pro-tumorigenic cytokines such as interleukin-4 (IL-4), IL-5, and IL-13. However, the mechanisms by which type 2 immune cells traffic to the tumor microenvironment are unknown. Here, we show that oncogenic KrasG12D increases IL-33 expression in pancreatic ductal adenocarcinoma (PDAC) cells, which recruits and activates TH2 and ILC2 cells. Correspondingly, cancer-cell-specific deletion of IL-33 reduces TH2 and ILC2 recruitment and promotes tumor regression. Unexpectedly, IL-33 secretion is dependent on the intratumoral fungal mycobiome. Genetic deletion of IL-33 or anti-fungal treatment decreases TH2 and ILC2 infiltration and increases survival. Consistently, high IL-33 expression is observed in approximately 20% of human PDAC, and expression is mainly restricted to cancer cells. These data expand our knowledge of the mechanisms driving PDAC tumor progression and identify therapeutically targetable pathways involving intratumoral mycobiome-driven secretion of IL-33.


Assuntos
Imunidade Inata , Interleucina-33/biossíntese , Micobioma , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Imunofenotipagem , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos , Modelos Biológicos , Micobioma/imunologia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Prognóstico , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Neoplasias Pancreáticas
13.
Breast Cancer Res Treat ; 192(2): 411-421, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35000093

RESUMO

PURPOSE: To examine the association between race and clinical outcomes (pathological complete response [pCR]; recurrence-free survival [RFS], and overall survival [OS]) in patients diagnosed with triple-negative (TNBC) or HER2-positive breast cancer treated with neoadjuvant chemotherapy (NAC). METHODS: Patients who self-identified as non-Hispanic white (NHW) or non-Hispanic Black (NHB) and were diagnosed with Stage I-III TNBC (n = 171 including 124 NHW and 47 NHB) and HER2-positive (n = 161 including 136 NHW and 25 NHB) breast cancer who received NAC from 2000 to 2018 at Roswell Park Comprehensive Cancer Center were included. Associations of race with pCR and survival outcomes were evaluated using logistic and Cox regression models, respectively. RESULTS: There was no statistically significant difference in pCR between NHB and NHW patients with TNBC (31.9 vs 29.8%; OR: 1.11, 95% CI 0.54-2.29) or HER2-positive breast cancer (36.0 vs 39.7%; OR: 0.87, 95% CI 0.36-3.11). After controlling for potential confounders, including age, stage, treatment regimens, insurance status, and comorbidities, no statistically significant difference in OS or RFS was observed between NHB and NHW patients within either subtype. CONCLUSION: TNBC or HER2-positive breast cancer patients treated at a single academic center in Buffalo, NY, showed similar outcomes independent of patients' race. Given the known genetic diversity of African American ancestry in the US, further studies investigating the interplay between race, geography, and clinical outcomes are warranted.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Negro ou Afro-Americano/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Etnicidade , Feminino , Humanos , Fatores Raciais , Estados Unidos
14.
Clin Cancer Res ; 28(10): 2038-2049, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35046055

RESUMO

PURPOSE: Increased prevalence of cytotoxic T lymphocytes (CTL) in the tumor microenvironment (TME) predicts positive outcomes in patients with epithelial ovarian cancer (EOC), whereas the regulatory T cells (Treg) predict poor outcomes. Guided by the synergistic activity of TLR3 ligands, IFNα, and COX-2 blockers in selectively enhancing CTL-attractants but suppressing Treg-attractants, we tested a novel intraperitoneal chemoimmunotherapy combination (CITC), to assess its tolerability and TME-modulatory impact in patients with recurrent EOC. PATIENTS AND METHODS: Twelve patients were enrolled in phase I portion of the trial NCT02432378, and treated with intraperitoneal cisplatin, intraperitoneal rintatolimod (dsRNA, TLR3 ligand), and oral celecoxib (COX-2 blocker). Patients in cohorts 2, 3, and 4 also received intraperitoneal IFNα at 2, 6, and 18 million units (MU), respectively. Primary objectives were to evaluate safety, identify phase 2 recommended dose (P2RD), and characterize changes in the immune TME. Peritoneal resident cells and intraperitoneal wash fluid were profiled via NanoString and Meso Scale Discovery (MSD) multiplex assay, respectively. RESULTS: The P2RD of IFNα was 6 MU. Median progression-free survival and overall survival were 8.4 and 30 months, respectively. Longitudinal sampling of the peritoneal cavity via intraperitoneal washes demonstrated local upregulation of IFN-stimulated genes (ISG), including CTL-attracting chemokines (CXCL-9, -10, -11), MHC I/II, perforin, and granzymes. These changes were present 2 days after chemokine modulation and subsided within 1 week. CONCLUSIONS: The chemokine-modulating intraperitoneal-CITC is safe, tolerable, and associated with ISG changes that favor CTL chemoattraction and function. This combination (plus DC vaccine) will be tested in a phase II trial. See related commentary by Aranda et al., p. 1993.


Assuntos
Neoplasias Ovarianas , Receptor 3 Toll-Like , Carcinoma Epitelial do Ovário/tratamento farmacológico , Quimiocinas , Ciclo-Oxigenase 2 , Feminino , Humanos , Imunoterapia , Ligantes , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Receptores CXCR3 , Receptor 3 Toll-Like/uso terapêutico , Microambiente Tumoral
15.
Cancer Immunol Res ; 10(1): 108-125, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34785506

RESUMO

The HER3/ERBB3 receptor is an oncogenic receptor tyrosine kinase that forms heterodimers with EGFR family members and is overexpressed in numerous cancers. HER3 overexpression associates with reduced survival and acquired resistance to targeted therapies, making it a potential therapeutic target in multiple cancer types. Here, we report on immunogenic, promiscuous MHC class II-binding HER3 peptides, which can generate HER3-specific CD4+ Th1 antitumor immune responses. Using an overlapping peptide screening methodology, we identified nine MHC class II-binding HER3 epitopes that elicited specific Th1 immune response in both healthy donors and breast cancer patients. Most of these peptides were not identified by current binding algorithms. Homology assessment of amino acid sequence BLAST showed >90% sequence similarity between human and murine HER3/ERBB3 peptide sequences. HER3 peptide-pulsed dendritic cell vaccination resulted in anti-HER3 CD4+ Th1 responses that prevented tumor development, significantly delayed tumor growth in prevention models, and caused regression in multiple therapeutic models of HER3-expressing murine tumors, including mammary carcinoma and melanoma. Tumors were robustly infiltrated with CD4+ T cells, suggesting their key role in tumor rejection. Our data demonstrate that class II HER3 promiscuous peptides are effective at inducing HER3-specific CD4+ Th1 responses and suggest their applicability in immunotherapies for human HER3-overexpressing tumors.


Assuntos
Neoplasias da Mama/terapia , Linfócitos T CD4-Positivos/imunologia , Vacinas Anticâncer/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Receptor ErbB-3/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Análise de Sobrevida , Células Th1/imunologia , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia
16.
J Pers Med ; 11(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34945796

RESUMO

Recent epidemiological studies have shown that obesity, typically measured by increased body mass index (BMI), is associated with an increased risk of gastroesophageal adenocarcinoma (GEAC), but the contributing molecular and immune mechanisms remain unknown. Since obesity is known to promote chronic inflammation, we hypothesized that obesity leads to inflammation-related immune dysfunction, which can be reversed by immune-modulating therapy. To test our hypothesis, we examined the clinical and molecular data from advanced GEAC patients. To this end, 46 GEAC tumors were evaluated for biomarkers representing tumor inflammation, cell proliferation, and PD-L1 expression. A CoxPH regression model with potential co-variates, followed by pairwise post hoc analysis, revealed that inflammation in the GEAC tumor microenvironment is associated with improved overall survival, regardless of BMI. We also observed a significant association between cell proliferation and progression-free survival in overweight individuals who received immune-modulating therapy. In conclusion, our data confirm the role of the immune system in the natural course of GEAC and its responses to immunotherapies, but do not support the role of BMI as an independent clinically relevant biomarker in this group of patients.

17.
J Immunother Cancer ; 9(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34782430

RESUMO

BACKGROUND: A first-in-human, randomized pilot phase II clinical trial combining vaccines targeting overexpressed, non-mutated tumor blood vessel antigens (TBVA) and tyrosine kinase inhibitor dasatinib was conducted in human leukocyte antigen (HLA)-A2+ patients with advanced melanoma. METHODS: Patient monocyte-derived type-1-polarized dendritic cells were loaded with HLA-A2-presented peptides derived from TBVA (DLK1, EphA2, HBB, NRP1, RGS5, TEM1) and injected intradermally as a vaccine into the upper extremities every other week. Patients were randomized into one of two treatment arms receiving oral dasatinib (70 mg two times per day) beginning in week 5 (Arm A) or in week 1 (Arm B). Trial endpoints included T cell response to vaccine peptides (interferon-γ enzyme-linked immunosorbent spot), objective clinical response (Response Evaluation Criteria in Solid Tumors V.1.1) and exploratory tumor, blood and serum profiling of immune-associated genes/proteins. RESULTS: Sixteen patients with advanced-stage cutaneous (n=10), mucosal (n=1) or uveal (n=5) melanoma were accrued, 15 of whom had previously progressed on programmed cell death protein 1 (PD-1) blockade. Of 13 evaluable patients, 6 patients developed specific peripheral blood T cell responses against ≥3 vaccine-associated peptides, with further evidence of epitope spreading. All six patients with specific CD8+ T cell response to vaccine-targeted antigens exhibited evidence of T cell receptor (TCR) convergence in association with preferred clinical outcomes (four partial response and two stabilization of disease (SD)). Seven patients failed to respond to vaccination (one SD and six progressive disease). Patients in Arm B (immediate dasatinib) outperformed those in Arm A (delayed dasatinib) for immune response rate (IRR; 66.7% vs 28.6%), objective response rate (ORR) (66.7% vs 0%), overall survival (median 15.45 vs 3.47 months; p=0.0086) and progression-free survival (median 7.87 vs 1.97 months; p=0.063). IRR (80% vs 25%) and ORR (60% vs 12.5%) was greater for females versus male patients. Tumors in patients exhibiting response to treatment displayed (1) evidence of innate and adaptive immune-mediated inflammation and TCR convergence at baseline, (2) on-treatment transcriptional changes associated with reduced hypoxia/acidosis/glycolysis, and (3) increased inflammatory immune cell infiltration and tertiary lymphoid structure neogenesis. CONCLUSIONS: Combined vaccination against TBVA plus dasatinib was safe and resulted in coordinating immunologic and/or objective clinical responses in 6/13 (46%) evaluable patients with melanoma, particularly those initiating treatment with both agents. TRIAL REGISTRATION NUMBER: NCT01876212.


Assuntos
Antígenos de Neoplasias/uso terapêutico , Antineoplásicos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Dasatinibe/uso terapêutico , Células Dendríticas/metabolismo , Melanoma/tratamento farmacológico , Antineoplásicos/farmacologia , Vacinas Anticâncer/farmacologia , Dasatinibe/farmacologia , Feminino , Humanos , Masculino , Melanoma/patologia , Projetos Piloto , Estudos Prospectivos
18.
Clin Cancer Res ; 27(24): 6726-6736, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34645646

RESUMO

PURPOSE: We evaluated the antitumor efficacy of cetuximab in combination with pembrolizumab in patients with RAS wild-type (RASwt), metastatic colorectal adenocarcinoma (mCRC). PATIENTS AND METHODS: In this phase Ib/II study, cetuximab was combined with pembrolizumab in patients with RASwt mCRC with ≥ one prior line of therapy for advanced disease. We analyzed baseline on-treatment tumor tissues for changes in the tumor microenvironment (TME), using flow cytometry and multispectral immunofluorescence. RESULTS: Forty-four patients were evaluable for efficacy. The study was negative for the primary efficacy endpoint [overall response rate: 2.6%, 6-month progression-free survival (PFS): 31%; P = 0.52]. Median PFS was 4.1 months [95% confidence interval (CI): 3.9-5.5 months]. No increase in adverse effects was identified. We observed favorable immunomodulation with 47% increase in the number of intratumoral CTLs posttreatment (P = 0.035). These changes were more pronounced in patients with tumor shrinkage (P = 0.05). The TME was characterized by high numbers of TIM3+ and CTLA4+ cells; there were few activated OX40+ cells. PD-L1 expression was higher in pretreatment tumor cells from metastatic sites versus primary tumor samples (P < 0.05). Higher numbers of PD-L1+ tumor cells at baseline were associated with tumor shrinkage (P = 0.04). Analysis of immune populations in the blood demonstrated decreases in PD-1+ memory effector cells (P = 0.04) and granulocytic myeloid-derived suppressor cells (P = 0.03), with simultaneous increases in CD4+/CTLA4+ cells (P = 0.01). CONCLUSIONS: The combination of cetuximab and pembrolizumab is inactive in patients with RASwt mCRC, despite its partial local immunologic efficacy. Further development of immuno-oncology combinations with enhanced efficacy and/or targeting additional or alternative immune checkpoints merits investigation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Colorretais , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Cetuximab , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Fluoruracila , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Microambiente Tumoral
19.
Cell Mol Life Sci ; 78(21-22): 6963-6978, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34586443

RESUMO

The endogenous chemokines CCL19 and CCL21 signal via their common receptor CCR7. CCL21 is the main lymph node homing chemokine, but a weak chemo-attractant compared to CCL19. Here we show that the 41-amino acid positively charged peptide, released through C-terminal cleavage of CCL21, C21TP, boosts the immune cell recruiting activity of CCL21 by up to 25-fold and the signaling activity via CCR7 by ~ 100-fold. Such boosting is unprecedented. Despite the presence of multiple basic glycosaminoglycan (GAG) binding motifs, C21TP boosting of CCL21 signaling does not involve interference with GAG mediated cell-surface retention. Instead, boosting is directly dependent on O-glycosylations in the CCR7 N-terminus. As dictated by the two-step binding model, the initial chemokine binding involves interaction of the chemokine fold with the receptor N-terminus, followed by insertion of the chemokine N-terminus deep into the receptor binding pocket. Our data suggest that apart from a role in initial chemokine binding, the receptor N-terminus also partakes in a gating mechanism, which could give rise to a reduced ligand activity, presumably through affecting the ligand positioning. Based on experiments that support a direct interaction of C21TP with the glycosylated CCR7 N-terminus, we propose that electrostatic interactions between the positively charged peptide and sialylated O-glycans in CCR7 N-terminus may create a more accessible version of the receptor and thus guide chemokine docking to generate a more favorable chemokine-receptor interaction, giving rise to the peptide boosting effect.


Assuntos
Quimiocina CCL21/metabolismo , Células Dendríticas/metabolismo , Linfonodos/metabolismo , Receptores CCR7/metabolismo , Receptores de Retorno de Linfócitos/metabolismo , Transdução de Sinais/fisiologia , Animais , Células CHO , Células Cultivadas , Cricetulus , Glicosilação , Humanos , Ligantes , Peptídeos/metabolismo , Ligação Proteica/fisiologia , Eletricidade Estática
20.
Am J Cancer Res ; 11(7): 3628-3644, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354864

RESUMO

Evaluation of the functional aspects if the tumor immune microenvironment (TIME), such as the recently introduced cytolytic activity score (CYT) index have been under the spotlight in cancer research; however, clinical relevance of immune cell killing activity in breast cancer has never been analyzed in large patient cohorts. We hypothesized that CYT reflects the immune activity of TIME and can predict patient survival. A total of 7533 breast cancer patients were analyzed as both discovery and validation cohorts. We found that high CYT was associated with advanced histological grade and triple-negative breast cancer (TNBC). High CYT in tumors was significantly associated with better survival in TNBC, but unexpectedly, not in other breast cancer subtypes. High CYT TNBC included both favorable immune-related, as well as unfavorable (suppressive) inflammation-related gene sets, and characterized by high infiltration with T cells and B cells. High CYT TNBC was associated with high homologous recombination deficiency and low somatic copy number alteration score and less mutant allele tumor heterogeneity, but not with tumor mutation burden (TMB). Although CYT was not associated with pathological complete response after neoadjuvant chemotherapy, it was significantly associated with high expression of multiple immune checkpoint molecules. In conclusion, CYT of TNBC is associated with enhanced anti-cancer immunity, less intra-tumoral heterogeneity, and with better survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...